Values of the polygamma functions at rational arguments

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2010 J. Phys. A: Math. Theor. 43239801
(http://iopscience.iop.org/1751-8121/43/23/239801)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 03/06/2010 at 09:19

Please note that terms and conditions apply.

Corrigendum

Values of the polygamma functions at rational arguments

J Choi and D Cvijović 2007 J. Phys. A: Math. Theor. 40 15019-28

The authors regret that there are errors in some of the equations in the final section of their paper. They would like to express their gratitude to Dr K S Kölbig for bringing the errors to their attention.

The sentence on page 15026 beginning with 'We also need the relations ...' has to be replaced with:

We also need the relations

$$
\psi^{(n)}\left(\frac{1}{3}\right)+\psi^{(n)}\left(\frac{2}{3}\right)=\left(3^{n+1}-1\right) \psi^{(n)}(1) \quad(n \in \mathbb{N})
$$

and

$$
\psi^{(n)}\left(\frac{1}{4}\right)+\psi^{(n)}\left(\frac{3}{4}\right)=2^{n+1} \psi^{(n)}\left(\frac{1}{2}\right) \quad(n \in \mathbb{N})
$$

which are easily obtained by recalling the multiplication formula for $\psi^{(n)}(z)$:

$$
\psi^{(n)}(m z)=\frac{1}{m^{n+1}} \sum_{j=1}^{m} \psi^{(n)}\left(z+\frac{j-1}{m}\right) \quad(n, m \in \mathbb{N})
$$

Further, equations (3.2) and (3.3) on page 15027 should read as follows:

$$
\begin{align*}
& \left.\begin{array}{l}
\psi^{(2 n)}\left(\frac{1}{3}\right) \\
\psi^{(2 n)}\left(\frac{2}{3}\right)
\end{array}\right\}= \pm(-1)^{n} \sqrt{3} 3^{2 n} \frac{(2 \pi)^{2 n+1}}{2(2 n+1)} B_{2 n+1}\left(\frac{1}{3}\right) \\
& +\frac{1}{2}(2 n)!\left(1-3^{2 n+1}\right) \zeta(2 n+1) \quad(n \in \mathbb{N}) \tag{3.2}
\end{align*}
$$

and

$$
\left.\begin{array}{rl}
\psi^{(2 n)}\left(\frac{1}{4}\right) \\
\psi^{(2 n)}\left(\frac{3}{4}\right) \tag{3.3}
\end{array}\right\}= \pm(-1)^{n} 4^{2 n} \frac{(2 \pi)^{2 n+1}}{2 n+1} B_{2 n+1}\left(\frac{1}{4}\right), ~(n \in \mathbb{N}) . ~ \$ ~(2 n)!\left(1-2^{2 n+1}\right) 2^{2 n} \zeta(2 n+1) \quad(n) \quad(2)
$$

